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gebildet waren ausschliesslich (100)-Flachen (Blittchen-
ebene) und (011)-Fliachen.
Die Elementarzelle besitzt die Abmessungen:

ay = 16,45 +0,02, b, =9,93 +0,035, ¢, =9,49 +0,02 4;
$=107,9 +0,2°; o=y =90°

Nimmt man an, dass 2 Molekiile in der Zelle enthalten
sind, ergibt eine Berechnung der Dichte 1,163 g.cm.~3.

Gemessen: 1,16; g.cm.—3.

Ein Ausschnitt aus dem reziproken Gitter wurde in
gleicher Weise wie bei der monomeren Verbindung ge-
wonnen. Es wurde um die ausgezeichnete Achse (b-Achse)
gedreht und prazessiert. Allgemeine Ausléschungen (hkl)
traten nicht auf. Die fehlenden Reflexe 20l mit [ =2n +1
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und 040 mit &k =2n + 1 weisen der Verbindung die Raum-
gruppe P2,/c zu.

Ich danke dem Bundeswirtschaftsministerium (For-
schungsvorhaben J 272) fiir die Unterstiitzung dieser
Arbeit. Herrn Prof. Dr. Wélfel, Technische Hochschule
Darmstadt, danke ich fiir die Hilfe bei der Gewinnung
der Prézessionsaufnahmen der monomeren Verbindung.
Mein Dank gilt weiterhin Herrn Prof. Dr. Zahn fiur die
Anregung der Arbeit und Dr. Dominik fiir die Uberlassung
der Oligomeren.
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The writer has shown (Cruickshank, 1956az) how molec-
ular angular oscillations can cause the maximum of an
atomic peak in the electron density to be displaced
towards the centre of rotation. The shift was taken to
be in a radial direction and was calculated as

A=1 s £ 1
= (1 Tee 1+ tz/eﬁ) ’ )

where 7 is the distance from the centre of molecular
oscillation, s? and 2 are the mean square amplitudes of
oscillation of the atom in the rotations about the two
principal axes perpendicular to the radius and ¢2 is the
Gaussian-breadth parameter for the peak before the
rotational oscillations are considered. The previous
derivation assumed that only angular oscillations about
axes perpendicular to the radius were relevant, since
the atom is not moved by an oscillation about this radius.
This assumption is clearly wrong in general. For if there
is an atom at (x,y, 0) and all the elements of the w;;
angular oscillation tensor (Cruickshank, 1956b) are zero
except wq;, the shift will obviously be towards the z-axis
and not towards the origin, so that the maximum will
appear at (z, y —4’, 0) and not at {x(1 —4/r), y(1 —4/r), 0}.
Equation (1) evidently gives the total shift only when a
principal axis of ws; coincides with the radius to the atom.

The previous formula was derived by finding the
maximum of the electron density along the radius.
The general problem is more difficult since the direction
of the shift is unknown. An approximate formula is
derived below from a centre-of-gravity approach.

Let r =(x, y, z) be the equilibrium position of an atom
and ¢ =(@;, @3, ¢;) be an arbitrary small rotation of the
molecule. Then the combined effect of rotations by
¢ and —¢ will be to produce a weighted contribution
to the total electron density whose maximum will lie
on the normal

a=-r+(r.¢/¢%e (2)

from the atom to the axis of oscillation and which will

be displaced from the equilibrium position by the small
amount }ag? The z component of this displacement is

Az(@) = —32(po? + @32) + 3y @195 + 2019, - (3)

It is shown in the Appendix that the weight to be as-
sociated with the contribution at this point is approx-
imately P(¢)D(ag), where P(¢) is the probability of an
oscillation ¢ and D(ag) is the density of the original
Gaussian peak at a distance ag from its centre. The values
of P(¢) and D(agp) are proportional to

P(p)=exp (—3Z 2w lypips) (4)
and
D(ap) =exp (—}a%p?/q?) , (5)

where w~1; is an element of the matrix inverse to wsj,
defined with respect to the arbitrary z, y, z axes, and the
summations are for ¢,5=1, 2, 3.

Thus the « component of the net shift due to the whole
angular oscillation specified by wj; is

ez = { 4:0) P@)Dlag)de [\ P(e)D@p)de.  (6)
Using (2) we can write

P(9)D(ap) =exp (—3 X ZAi;pips) (7)
where

A= +2%) ¢+ o™y, } (8)

A= —ay/g* + o™y, ete.

Since 4z(¢) is given by (3), we need the result that
S 9ips exp (=3 X ZAijpigs) de

=47 S exp (-2 ZAypig;)de, 9)

where A-1; is an element of the matrix inverse to A;;.

By combining (3), (7) and (9) with (6) the net shift of
the electron-density maximum can be found. Reversing
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the sign, the desired coordinate corrections for a peak
observed at (z, y, z) prove to be

—ep=3{w(A g + A1) —yA 1, —2 A7),
—ey=3{y(A Yy + A7) —2 Ay —xA 1},
—er =3 {2 (A + A ) A —y AN, .

(10)

We may check that these corrections agree with the
previous formula (1) if one of the principal axes of w
coincides with the radius. For an atom at (r, 0, 0) and
if w3 =wy; =w,;=0, the non-zero elements of A are

Ay =1wy, Ay=(r%/g%+1]wsy), Ass=(r?/g? + 1/wgs) .
The corrections then reduce to —gy= —¢,=0 and
—er =3 {r(A 1 + A7)},

which yields (1) immediately since s? = w,,r? and #? = w,,72.

For the problem in which w,; is large and all other
elements of ws; are negligible and the atom is at (z, y, 0),
the only appreciable element of A-1j is

A7y, =0/ (0hy? +¢7) .

The corrections then reduce to —ez= —¢,=0 and

—ey = —§yw,¢}/(wy? +¢%)

1 s*
“W{r3e7m).

where s =w,,y%. This agrees with the intelligent applica-
tion of (1), when the shift is taken normal to the axis
of oscillation rather than towards the molecular centre.

The result for one other special case, which may be
useful for planar molecules, is worth quoting. For an
atom at (x,y,0) and when w,,=wy,;=w,;;=0, the x
correction is

ey Y Ponr® |\ B[ o
S P @+ 0o + w1353 12 \1+(wggr?)/g?) [’

where 72 =22 +y2. The first term differs from that sug-
gested by (1) by the addition of w,,¥? in the denominator;
the second term is that expected for the £ component of
the radial shift due to wy;. The y shift is similar and the
z shift is zero.

Any calculations which may have been done with
equation (1) will be appreciably in error only if the w;y
tensor is decidedly anisotropic and then only for those
atoms whose radii are not roughly normal to the axis
of maximum oscillation. The results for benzene (Cox,
Cruickshank & Smith, 1958), naphthalene, anthracene
(Cruickshank & Sparks, 1960) and f-succinic acid
(Broadley et al., 1959) are either exactly as given pre-
viously or are altered only negligibly. Even in chrysene
(Burns & Iball, 1960), where the two angular oscillations
of 17 and 6 deg.? in the plane of the molecule are rather
different, the maximum coordinate change is only 0-003
A; the majority are less than 0-001 A. The changes are
more important in 1,2-diphenyltetrafluoroethane (Cruick-
shank, Jeffrey & Nyburg, 1959), which is a non-planar
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molecule and whose principal w;; of 47-2 and 4 deg.?
are markedly anisotropic. The rotational corrections for
the bonds C,~C, and C,—C, change from 0-001 to 0-007 A.
The revised bond lengths are C,"-C; 1:539 A (unchanged),
C-F 1-359, 1-382 A (each reduced by 0-003 A) and mean
ring C-C 1-394 A (an increase of 0-004 A).

Appendix

The various =+ ¢ produce a series of peaks whose maxima
are all only a small distance from the equilibrium posi-
tion. A simple parabolic expansion of each peak shows
that the correct weights to be assigned to any such
series of adjacent maxima, to give the position of the
maximum of the total density along a given line, are
proportional to P(9)S(¢), where P(¢) is the probability
of the displacements + ¢ and S(9) is the second derivative
along the given line of the combined + ¢ peak.

Along the radial line through the equilibrium position,
the density from the + ¢ peak is Gaussian, so that along
this line and near the maximum S(¢) is proportional to
D(ap)/q* to the required order of magnitude, where
D(ag) is the density of the original Gaussian peak at a
distance ag from its centre and ¢2? is its breadth param-
eter. In any other direction perpendicular to a particular
vibrational movement, S(¢) has the same value, which
is therefore appropriate when there is only one non-zero
principal value of wy and the shift is towards its axis.
The value P(¢)D(ap) is also correct for any direction
within the plane when there are only two non-zero
principal values of wy and the atom is coplanar with
their axes. In more general cases, with three non-zero
principal values and when the shift is not along the radius,
the value of S(¢) will be approximately proportional to
D(ap)/q’* where q'2=q2+ (ap)? cos? x and « is the angle
between the direction of net shift and the motion in the
oscillation + ¢@.

It seems a sufficient approximation to take the value
S(9) =D(ap)/q? in all cases because (a) the direction of
the net shift is generally unknown in advance, (b) it is
correct for the two extreme cases of an exactly radial
shift and of a shift towards the axis of the single non-zero
value of wy, and (c) (ap)? is usually smaller than gZ2.
Since the ¢? factor is common to all ¢, we take the
weight to be associated with each peak at }ag? as
P(¢)D(ap).
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